If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15u^2+4u-3=0
a = 15; b = 4; c = -3;
Δ = b2-4ac
Δ = 42-4·15·(-3)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-14}{2*15}=\frac{-18}{30} =-3/5 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+14}{2*15}=\frac{10}{30} =1/3 $
| 2=-y/11 | | 4x^2-12(0)+9=0 | | 2(x+4)=8x-10 | | y-18=-46 | | 23x-35=90 | | -28=3w-7 | | 2x-11(10x-1)=11(1-10x) | | 9x+16-2x=79 | | 3=c+4-13 | | 61-v=262 | | 14-2(-3x)=20 | | 6(4v-5)=-2(11v-8) | | -49+p=1 | | 4x-2(x-3)+1=9-7(x-1) | | (6x-26)=4x | | 20=23-p | | 5x^2+12=7x | | 3=r+6 | | 8(v+3)-5(v-2)=1=6v+2v+3 | | (2x-7)+2(4x+3)=112 | | -16+3=4x-2 | | 134-x=232 | | 3÷(t+6)-10=-3t+2 | | 95-b,b=59 | | 28=+7x=-7(-x-4) | | 1÷3(t+6)-10=-3t+2 | | 5x/2-2×/3=11 | | 40➗p=1/4 | | 17-3x-5=5x-4x | | x^2-0+12=0 | | 17.5+.17n=32+.07n | | -2(6v+4)=-8v-28 |